Efficient Synthesis of Approximate Threshold Logic
Circuits with an Error Rate Guarantee

Yung-An Lai, Chia-Chun Lin, Chia-Cheng Wu, Yung-Chih Chen§, Chun-Yao Wang
Department of Computer Science, National Tsing Hua University, Hsincu, Taiwan, R.O.C.

§Department of Computer Science and Engineering, Yuan Ze University, Chungli, Taiwan, R.O.C.

Abstract— Recently, Threshold logic attracts a lot of attention
due to the advances of its physical implementation and the
strong binding to neural networks. Approximate computing is a
new design paradigm that focuses on error-tolerant applications,
e.g., machine learning or pattern recognition. In this paper,
we integrate threshold logic with approximate computing and
propose a synthesis algorithm to obtain cost-efficient approximate
threshold logic circuits with an error rate guarantee. We conduct
experiments on IWLS 2005 benchmarks. The experimental re-
sults show that the proposed algorithm can efficiently explore
the approximability of each benchmark. For a 5% error rate
constraint, the circuit cost can be reduced by up to 65%, and
22.8% on average. Compared with a naive method, our approach
has a speedup of 2.42 under a 5% error rate constraint.

I. INTRODUCTION

Threshold Logic has been studied since the 1960s. In 1961,
an effective method for enumerating threshold functions was
proposed [30]. Then, an approach to determining the input
weights and threshold value of a Linear Threshold Gate (LTG)
was proposed [31]. Later, linear programming methods were
proposed to determine whether or not a function could be
realized by a single LTG [32]. Despite several achievements
on threshold logic in early days, threshold logic did not attract
much attention due to lacking efficient methods for hardware
implementation.

Recently, with advances of emerging technologies such as
Resonant Tunneling Diodes [3], Quantum Celluar Automata
[25], Resistant switching devices [12], Spin-based devices [2],
and Single Electron Transistor [26], threshold logic becomes
more popular than before. Accordingly, the design automation
research for threshold logic grows in various aspects including
multi-level synthesis methodologies [1][7][11][24][34], static
timing analysis [28], verification [20], and testing [13].

On the other hand, threshold logic also strongly binds
neural networks [16]. In fact, the neurons in a neural network
are all LTGs. Currently, neural networks are the underlying
platforms for Artificial Intelligence related applications such
as machine learning [18], and pattern recognition [10].

Approximate computing, which is an emerging design
paradigm targeting at error-tolerant applications, has been
proposed recently. The benefit of approximate computing is to
exploit the given error tolerance of applications to implement
designs approximately with smaller area, delay, or lower
power consumption [8]. Many previous works demonstrated
the effectiveness of approximate computing in different design

This work is supported in part by the Ministry of Science and Technology
of Taiwan under Grant MOST 106-2221-E-007-111-MY3, MOST 106-2221-
E-155-056, MOST 103-2221-E-007-125-MY3

978-3-9819263-0-9/DATE18/)2018 EDAA

levels ranging from algorithm [9], architecture [17], logic, to
transistor levels [14].

Although many approximate logic synthesis techniques
have been proposed [6][27][29][33], they are not for threshold
logic networks. To directly leverage the inherent error tolerance
in the applications of machine learning or data mining that
utilize neural networks as platforms, we propose the first work
that discusses the approximate logic synthesis for threshold
logic networks in this paper.

To quantify errors in approximate computing, two types of
error metrics are commonly used [15]: error magnitude and
error rate. The error magnitude is usually used in arithmetic
circuits to quantify the output differences of correct circuits
and approximate ones in numerical values. Conversely, the
error rate represents the percentage of all input patterns that
produce the erroneous outputs in the approximate circuits. In
this work, we adopt the error rate metric, and minimize the
synthesized circuits while meeting the error rate constraint.

The main contributions of this work are two-fold:
(1) This is the first work that integrates threshold logic net-
works with approximate computing.
(2) The proposed approximate operations benefit threshold
logic networks optimization with a hybrid cost function.

II. PRELIMINARIES
A. LTG and threshold function

An LTG is a logic gate with n binary inputs and one
binary output. The parameters of an LTG are weight w;,
which is corresponding to an input x;, and the threshold value
T. An LTG can be represented by a weight-threshold vector
(w1, wa,, wy; T). For example, the LTG in Fig. 1(a) can
be represented as (—3, 2, —1, 1; 1). The output f of an LTG
is evaluated by EQ(1):

1, if Y mw > T
(L) = ol (1

f(z1, 20, ... n
0, if szwz<T
i=1

where w; and T' can be positive or negative integers. In EQ(1),
if the weighted summation is greater than or equal to the
value 7', the output f is 1; otherwise, the output f is 0. For
example, an LTG (2,1, 1; 3) produces 1 under the pattern 110;
it produces O under the pattern 100. A function that can be
realized by a single LTG is called a threshold function. A
network composed by LTGs is called a threshold network, and
any functions can be represented by threshold networks.

773

Fig. 1. (a) An LTG having negative weights. (b) The resultant LTG after
weight transformation.

L == ==l L

RIR| OOk —|lO|O|T

r|lo|r|o|r|o|r|o]a
NG R

Fig. 2. The set of CEVs of an LTG.

B. Positive-negative weight transformation

By the definition of an LTG, its weights and threshold value
can be positive or negative integers. For ease of analyzing
threshold networks, we transform the negative weights into
positive ones by the positive-negative weight transformation
[23]. The transformation procedure is as follows: (1) Negate
the negative weights to positive ones, and add the absolute
values of negative weights into the threshold value; (2) Reverse
the polarities of corresponding inputs of the negated weights.
For example, in Fig. 1(a), —3 and -1 are changed to 3
and 1, respectively. Then, the threshold value 1 is updated
as 1+4|-3|+|-1|=5. Finally, the polarities of z; and xz3 are
reversed, represented as dots, as shown in Fig. 1(b). This
weight transformation procedure eliminates negative weights
without changing the functionality of an LTG.

C. Critical-Effect Vector

For an LTG, there exists at least an input vector, called
Critical-Effect Vector (CEV), such that the output changes from
1 to 0 when any one of its inputs in this vector changes from
1 to 0 [22]. For instance, in Fig. 2, (a, b, ¢) = (0, 1, 1) and (1,
0, 0) are the CEVs of the LTG (2, 1, 1;2). The complete set of
CEVs is an efficient representation for the functionality of an
LTG, and is also used to verify the equivalence of two LTGs.
Furthermore, when we want to simplify the weights or the
threshold value of an LTG without changing its functionality,
we can check if the CEVs are intact for determining the
validity of weights or threshold value reductions.

D. Hybrid cost function of LTG networks

Gate count is a commonly used metric to evaluate the
synthesized results of traditional Boolean networks. For LTG
networks, many previous works also used this metric to
evaluate the synthesized results [7][20][24]. However, when
using the gate count as the cost function, designers tend to
obtain a network with a fewer number of LTGs, even the
LTGs might have more input variables, larger weights, or larger
threshold values. This situation would lead difficulty to or even
violate the restrictions in the physical implementation of an
LTG [4]. For example, the fanin number of an LTG is generally
suggested to be less than seven [23].

On the other hand, some previous work only considered
the summation of weights and threshold values as the cost
function [22]. This situation may result in a threshold network

Oorl
(c) (d)

(a) An original LTG. (b) RW. (c) RG. (d) CC.

f”=00r1

Fig. 3.

containing lots of primitive gates e.g. AND, OR, and neglect
the compactness characteristic of threshold logic.

In fact, both the gate count and the weight-threshold
summation in threshold networks are important as studied in
[21], where a hybrid cost function is used as shown in EQ(2).

cost = - Z(Z wij +T;) + (1 —) - |gate] (2)

In EQ(2), « is balance pjarameter about the gate count and the
weight-threshold summation, w;; is the weight of input x; in
gate i, T; is the threshold value of gate 4, and |gate]| is the gate
count in the whole threshold network. In this work, we also
adopt this hybrid cost function in the synthesis of approximate
threshold networks.

III. PROPOSED METHOD
A. Error rate computation

In the synthesis of approximate circuits, the first issue to
be dealt with is error computation. As mentioned, we adopt the
error rate as the metric to measure the quality of approximate
circuits. To represent the functionality of the original circuit
efficiently for further error rate computation, many previous
works simulated enormous random vectors with a uniform
distribution [33]. These random vectors are saved and regarded
as Golden Vector (GV) of the original circuit. Then the vectors
having different responses at the outputs between the original
circuit and the approximate one are called Erroneous Input
Vectors at Output (EIVO). The ratio of the number of EIVO
and the number of GV is defined as the error rate, which is
shown in EQ(3).

|[EIVO|
GV
This paper also adopts the same method to evaluate the
error rate of approximate circuits.

ErrorRate = x 100% 3)

B. Approximate operations

We propose three types of approximate operations.

Type 1: Remove one Weight (RW): This operation sets a
weight w; as 0. Then the corresponding input cannot influence
this LTG. For example, Figs. 3(a) and 3(b) are an original LTG
and the resultant LTG after applying an RW operation on the
weight of input z3. Note that the input x3 of weight zero can
be removed directly as shown on the right of Fig. 3(b).

Type 2: Remove one Gate (RG): This operation removes the
LTG and connects one of its input to the output of the LTG. For
example, Fig. 3(c) is the resultant circuit (wire) after applying
an RG operation. The input x; is connected to the output.

Type 3: Change to Constant (CC): This operation changes
the LTG to a constant 0 or 1. For example, Fig. 3(d) is a
resultant circuit (constant) after applying a CC operation.

774 Design, Automation And Test in Europe (DATE 2018)

X
% f = o——¥=0
X3

Fig. 4. The special case of the approximate operations.

In our synthesis flow, we will apply these approximate
operations to the threshold network repeatedly. For the RW
operation, it can be applied to an LTG more than once
for further approximation if necessary. For the RG and CC
operations, they are not the case. This is because the resultant
LTGs become a wire or a constant. However, for a resultant
LTG after applying an RW operation, sometimes it would be
also simplified as a constant 0. For example, in Fig. 4, the left
LTG is evaluated as O under all input vectors and is equivalent
to a constant 0. Hence, we will check if a resultant LTG is a
constant 0 after applying an RW operation. If so, the resultant
LTG will be replaced by a constant 0.

C. LTG and approximate operation candidate selection

We apply an approximate operation to a selected LTG
repeatedly. A good approximation is to reduce a higher cost
while incurring less error. Two candidate selection issues need
to be addressed. (1) Which LTG should be selected first
for approximation? (2) What kind of operation should be
performed on the selected LTG?

The locations of LTGs in a threshold network show dif-
ferent potential for approximation. If the approximate LTG
is near the Primary Inputs (PIs), the error effect caused by
approximation might be masked due to more levels in the
fanout cone of the LTG. On the other hand, if the approximate
LTG is close to the Primary Outputs (POs), more levels in the
fanin cone might make the distribution of local inputs occurred
in an LTG non-uniform. If the number of input vectors with
respect to the erroneous local inputs is fewer, the error rate
would be lower. Hence, we observed that different locations
for approximation have different benefits to reduce error rates.
As a result, the locations of LTGs for approximation are not
considered. We randomly choose an LTG for approximation.

However, for the second issue, we have a strategy. Gener-
ally, keeping the input with the largest weight in an LTG can
approximate the functionality of the LTG with less error. Con-
versely, removing the input with the smallest weight influences
the functionality of the LTG very little. As a result, applying
an RG operation with keeping the input of the largest weight,
and applying an RW operation with removing the input of the
smallest weight are two preferable choices in our algorithm.

D. Error rate estimation after approximation

Applying the proposed approximate operations reduces the
cost of the threshold network; however, we need to further
consider if the error rate exceeds the constraint during ap-
proximation. Choosing a candidate LTG with an approximate
operation, we have to estimate the corresponding error rate
after the approximation. Once a candidate satisfying the error
rate constraint is obtained, we accept the candidate and update
the current approximate network. The error rate estimation
considers two points: (1) Only an overestimation is acceptable.
(2) A more accurate estimated result is better.

We divide the discussion into three parts. The same exam-
ple will be used throughout these three parts. In the example,

R alb|c]f GVID CurVID !
b f ojofo]o 1,38.. 1,38... 0
¢ ojof1]o 50, 99... 50, 99... 0
@) o|1]o0]o 11, 67... 11, 67.. 0
o|1|1]1| 285569 28,55,69 | 0

) 1lofo]o 31, 86... 31, 86... 0
b I3 1lof1]1| 21,2329 21,23,29 | 0
¢ 1l1]o]1 7,52... 7,52.. 1
) 1l1f1]1 29, 30... 29, 30... 1

(c)
Fig. 5. (a) An original LTG. (b) The approximate LTG. (c) Local information
at the source.

we approximate the threshold network twice and compute the
error rate.

The scenario in this example is set as follows. The total
number of golden vectors, |GV, is 100, and the error rate con-
straint is 4%. To differentiate the EIVO at different iterations,
we add an additional superscript on the original notation of
EIVO. For example, EIVO®) stands for the EIVO after the
second approximate operations. Note that EIVO© = () due
to no approximation.

1) Part I: After applying the GV into the original threshold
network, we obtain the Local Input Vector (LIV) for each
gate. For example, assume that Fig. 5(a) is an LTG f, which
will be approximated as f’ in Fig. 5(b) by an RW operation.
Its truth table containing LIV abc = 000 ~ 111 and the
corresponding Vector ID (VID) at the PIs is shown in Fig.
5(c). According to Fig. 5(c), f # f’ for LIV 011 and 101
and the corresponding VID are 28, 55, 69, 21, 23, and 29.
Columns 5 and 6 in Fig. 5(c) represent the Golden Vector ID
(GVID) and Current Vector ID (CurVID), respectively. GVID
column exhibits the VID distribution in the original threshold
network and this information is obtained from GV generation.
CurVID column stands for the current VID distribution in the
approximate network, and this information will be updated
after an approximation is accepted.

The location of the approximate gate f’ is called the
source of this approximation and the corresponding VIDs are
called Erroneous Input Vectors at Source (EIVS). Note that
since the error effects of EIVS are not always propagated to
the POs, we should not estimate the error rate as IEIVS] _

GV
28,55,69,21,23,29 . .
W = 6%, which could be overestimated.

2) Part II: In a global view, the EIVS have considered the
influence from the transitive fanin cone of the source. Next,
we also need to consider the error effect propagation to the
transitive fanout cone of the source. However, if we use the
POs as the observation points for checking whether the error
effect is propagated out or not, the computation efforts would
be large. To balance the computation efforts and the accuracy,
we propose a method named limited-level error simulation.
Before introducing this method, we define a term.

L-Boundary LTGs: Given a source, and a user-defined
parameter L, the LTGs in the transitive fanout cone of the
source satisfying one of the following conditions are called
L-Boundary LTGs.
(1) The shortest level from source to the LTGs is equal to L.
(2) The shortest level from source to the LTGs is less than L,
but the LTGs are POs.

The limited-level error simulation is composed of three
steps: (1) Search L-Boundary LTGs in a Breadth First Search

Design, Automation And Test in Europe (DATE 2018) 775

VID:21,23,28, VID:23,29,55

29,55,69

(a)

vio | .. [21|22|23| 2425|2627 |28]29] .. |55

EIVB X X X X
(b)

Fig. 6. (a) The erroneous status after propagating EIVS of f’. (b) The EIVB

of an approximate operation on f’.

GVID CurviD

10, 28. 1,23, 28..

23,42, 66. 42, 66.

29,35, 40... 35, 40...
56,72 55,56,72
9,17... 9,17...
21,84.. 21,84.
15, 55... 15,29...
69, 77. 69,77...

slelele]m]r]ele]=

elelelelolelolo|=

(c)

Fig. 7. (a) An original LTG. (b) The approximate LTG. (c¢) Local information
at the source.

manner. (2) Propagate the error effect in EIVS from the source

to the L-Boundary LTGs. The remaining erroneous vectors are

called Erroneous Input Vectors at Boundary (EIVB). (3)

Estimate the error rate by EQ(4)

|[EIVOU—1) U EIV B
GV

where EIVOU=D is the EIVO from the last iteration.

FEstimatedError Rate =

“

For example in Fig. 6(a), the source is f’, and we assume
that L is set 2 in this example. L-Boundary LTGs are s,
u, and r, where r is a PO. Each L-Boundary LTG has its
VID. According to Fig. 6(a), we obtain the EIVB = {21, 23,
29, 55}, which is obtained by the union of VID in the L-
Boundary LTGs s, u, and r. This result is listed in Fig. 6(b)
and also demonstrates that the error effects of some EIVS
are blocked. Finally, the error rate is estimated by EQ(4) as
[0U{21,23,29,55}| _ 4 = 4%.

100 100

The limited-level error simulation reduces the computation
effort for estimating the actual error rate. If the estimated
error rate is less than the error constraint, the actual error
rate will definitely meet the constraint. Hence, we will accept
this approximate operation and update the local information
of each LTG. On the other hand, if the estimated error rate
is larger than the error rate constraint, we will discard this
approximation, and evaluate another approximation candidate.

3) Part I1I: We have already accepted f’ for approximation
because the estimated result does not exceed the error rate con-
straint. Furthermore, the updated result shows that ET VoW
becomes {21, 29, 55}, where VID 23 is eliminated after the up-
dating. Next, we conduct the second approximation for 5’ using
the same method. First, we calculate EIVS of j’ by the local
information in Fig. 7, and the EIVS are {55, 56, 72}. Second,
we conduct the limited-level error simulation, and the EIVB
are the same. Finally, the error rate is calculated by EQ(4) as

|[EIVOWUEIVB| _ [{21,29,55}U{55,56,72}| _]{21,29,55,56,72}| _
[GV] = [GV] = [GV] =
%0 = 5%. Because the error rate exceeds the constraint 4%,

the approximate operation on j’ is rejected.

LS MS FS Qs

a
(@ L=0.5%depth L = depth L =0.3xdepth

v B
(b) LS MS FS

© LS Qs
(d) LS | MS Qs
(e) LS MS FS Qs

0.5xTimeout

Fig. 8. The parameter settings in each stage of approximation.

In the example of j’, we show that some erroneous vectors
in the previous approximate operations cannot be included in
the EIVB of j'. For example, VID 21 and VID 29 are in the
EIVOWM, but they are not seen at the EIVB of ;. Because
EIVB of j' only considers the erroneous vectors generated
by 7', other erroneous vectors might be disappeared in EIVB.
However, we have already obtained the overall erroneous
vectors from EIVOU~1 by updating. Hence, the union in
EQ(4) combines the error effect of EIVO~1) and EIVB such
that the estimated error rate will not be underestimated.

E. Approximation heuristic

The proposed approximation heuristic consists of four
stages, and they are Leading Stage (LS), Middle Stage
(MS), Fine-tuned Stage (FS), and Quick-searching Stage
(QS). Two parameters cause the stage transition and they
are AttemptLimit and Timeout. AttemptLimit is a user-
defined parameter for representing the upper bound of the
failing trials during approximation. Timeout is a timing
budget parameter for the overall approximation. If the selected
approximation in one stage violates the error rate constraint for
AttemptLimit times consecutively, the heuristic will transit
to the next stage. However, for large circuits with more LTGs,
when CPU time reaches one-half of the Ttmeout, we jump to
QS for converging the approximate results quickly. We discuss
the details of the heuristic in the following paragraphs.

We create two queues, High Priority Queue (HPQ) and
Low Priority Queue (LPQ), to prioritize the candidate LTGs.
We choose the LTGs from the HPQ first. When the HPQ
is empty, we choose the LTGs from the LPQ. Initially, we
insert every LTG into the HPQ. When an LTG is chosen
for approximation but the corresponding estimated error rate
exceeds the error rate constraint, a failure counter for that LTG
will increase by one. When the failure counter is over a user-
defined value, we remove the LTG from the HPQ to the LPQ.
Furthermore, if an RG or CC operation is accepted, the corre-
sponding LTG is removed out from the queue immediately.

To achieve a better quality of approximation, we shrink the
error rate constraint in the first stage. That is, if the original
error rate constraint is 3, we set the error rate constraint to be
v in the first stage LS, where v = 0.25/3. The reason behind
this is that an approximate candidate consumes most of the
error rate budget is not a good candidate. Hence, we exclude
this candidate from the result in the LS. For the stages of MS,
FS, and QS, we resume the error rate constraint to (3.

On the other hand, the limited-level error simulation el-
evates the efficiency by reducing the search space, but it
might sacrifice the quality of the approximation. Generally,
a smaller L reduces the estimation effort but could miss
some possible candidates. A larger L spends much estimation
time for having more accurate estimated results. To tradeoff

776 Design, Automation And Test in Europe (DATE 2018)

X1)(1
Xz z »
X3 X3
last approximation

X1

7 » 7
X3
simplification

Fig. 9. An example for removing redundant weight and threshold value of
an approximated LTG.
T ¥R [1
prm— < Reach D 5eTimeou)_—————— Tanitto05
B - e —_ YEB
< Fuosed Atemptlimit)_———— 57
Input: A netwatk, B
emof e constaint NO T
— Randory select a0 LTG. -
Weight franskemation T 1
] . (Generate an apprasimats cperation E Redendancy removal =———
GV generation SE—— A ——l—
Limiled-evel eror simustion i
i | | Reverse weight ransiormation
YEs T~ 1
b— Exzoed Ermor Rate Constraint . ¢
T forthe ooenistage? — | | Quipul: Appeoximate nefwork
-';"5-“ — 1 | satisying o ate consiraint
| et EE |
neetwork. H J -

! B
Fig. 10. The overall flow of our algorithm. ' '

estimating effort and approximation quality, we dynamically
adjust L in different stages. For the LS and MS, we set L as
0.5xlargest depth in the threshold network heuristically. For
the FS, we change L to the largest depth to explore the larger
solution space, where might not be searched during LS or MS.
Conversely, if the heuristic transits to the QS, that means the
remaining time budget for approximation is tight, we change
L to 0.3 xlargest depth for further reducing the search space.

We summarize the parameters and stage transitions in Fig.
8. Fig. 8(a) lists the settings under different stages. In Fig. 8(b),
it shows a situation that overall CPU time does not exceed
one-half of the Timeout, and the total CPU time for LS and
MS are regarded as a reference for running the FS stage. In
Fig. 8(c) ~ Fig. 8(e), the earlier stages reach one-half of the
Timeout, then they jump to QS stage directly.

F. Redundancy removal

After obtaining a network that cannot be further approx-
imated in our algorithm, we try to remove redundancy on
the remaining weights and threshold value for further cost
reduction. For example, assume that the original LTG z is in
Fig. 9 and 2’ in the middle of Fig. 9 is an approximate LTG
after removing xo and the corresponding weight. We can apply
the simplification technique proposed in [22] to obtain a more
simplified LTG, as shown on the right of Fig. 9.

The simplification technique in [22] is a CEV-based ap-
proach. Hence, all of the remaining LTGs are applicable for
this simplification technique. We briefly describe two major
steps of this simplification technique. (1) The weights are
sorted by their values in a decreasing order. (2) Decrease the
weights from the largest weight by 1, and the threshold value
is also reduced by 1. If the CEVs of the new LTG remain
the same as the original LTG, that means the two LTGs are
functionally equivalent, the original LTG will be replaced by
the new LTG. Otherwise, we repeat the procedure for the next
weight. The simplification procedure is terminated until all the
weights cannot be further reduced.

G. Overall flow

The overall flow of our algorithm is shown in Fig. 10. The
inputs are an initial threshold network and a user-specified
error rate constraint. The output is an approximate network
satisfying the error rate constraint. We first conduct the weight
transformation, followed by the GV generation. Next, the
procedures enclosed in a dotted area are the main procedures
of our algorithm and divided into two parts. The upper part is
for checking T'imeout or stage transition. In the lower part, we
select LTGs, generate approximate operations, estimate error
rate, and update the network repeatedly. When the approxima-
tion violates the error rate constraint for Attempt Limit times
consecutively in the FS or QS stages, the approximation ends.
Next, the weights and threshold values are simplified. Finally,
we perform the weight transformation reversely to report the
resultant approximate threshold network.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ language. The
experiments were conducted on a 2.6 GHz Linux platform with
Intel Xeon E5-2650V2. The benchmarks are from IWLS 2005
[35] and MCNC. Each benchmark was initially synthesized
as a threshold network by a tool in [34], using |PI| as the
fanin number constraint. The experimental settings were as
follows. Since our algorithm involves randomness in some
procedures, we conducted experiments on each benchmark
for 10 times and report the average results. Note that the
experiments on one benchmark with different error rates used
the same random seed to ensure the GV are the same for
comparison. Furthermore, the size of GV is 10000, which is
the same as the previous work [33]. The balance parameter
mentioned in Section II-D is set as 0.5. Attmept Limit is set
as 0.7x|LTG| in the network. Timeout is 3600 seconds.

Since this work is the first approximate circuit synthesis
targeting at the threshold networks, to demonstrate the effec-
tiveness and efficiency of our approach, we also implemented
a naive method, and conducted experiments for comparison. In
the naive method, the proposed heuristic in Section III-E was
not adopted, i.e., the parameters were fixed for all the stages.

TABLE I shows the experimental results. Column 1 lists
the benchmarks. Columns 2~4 are the initial number of
LTGs, weight-threshold summation, and cost in the bench-
mark. Columns 5~12 and Columns 14~21 are experimental
results for 5% and 10% error rate constraints. For each error
rate constraint, we list the cost, cost improvement (I.), final
error rate (E.), and CPU time (T) of the naive method and our
approach compared with the initial network. Columns 13 and
22 are the ratios of CPU time between the naive method and
our approach for 5% and 10% error rate constraints.

According to TABLE I, the averaged cost improvement
of our approach is higher than that of the naive method.
Furthermore, our averaged speedups compared against the
naive method are 2.42 and 2.14 for 5% and 10% error rate
constraints. This is because we do not explore the whole
threshold network for estimation during LS, MS, and QS
stages. However, for dalu, the naive method performed better
than ours. This is because dalu has a large depth compared
with other benchmarks. The large depth causes the error rate
estimation inaccurate in our limited-level error simulation.

Design, Automation And Test in Europe (DATE 2018) 777

TABLE 1. THE COMPARISON OF EXPERIMENTAL RESULTS BETWEEN NAIVE AND OUR APPROACH.

5%

10%

Naive Ours Naive Ours
Bench. | LTG Sum Cost | Cost L(%) E.(%) T | Cost L(%) E(%) T |Rat| Cost L(%) E(%) T | Cost L(%) E(%) T |Rat
C1908 | 287 1332 809.5| 516.0 36.26 3.89 249.7| 5453 32.64 448 137.0|1.82| 5652 30.18 9.37 2255| 525.0 35.15 9.71 144.7|1.56
usbphy | 288 1412 850.0| 782.6 7.94 495 125.1| 765.1 9.99 4.88 7221173 7929 672 9.95 88.5| 7473 1209 9.75 76.5|1.16
C1355| 340 1678 1009.0| 976.8 3.19 4.96 74.0| 956.0 526 496 141.2]0.52| 9485 6.00 9.99 1289 9049 10.32 995 184.6(0.70
rot | 354 1648 1001.0| 9163 846 499 249.6| 884.4 11.65 494 1357|1.84| 9039 9.71 9.99 2243| 852.8 14.81 995 154.1|1.46
alud | 372 1774 1073.0| 977.3 892 498 2449 968.7 9.72 493 1464 |1.67| 9382 1256 9.98 294.7| 9275 13.56 996 157.4|1.87
x3| 390 1782 1086.0| 9644 11.20 498 3188| 938.2 13.61 495 110.1[290| 940.8 13.37 997 3350 906.2 1656 9.94 124.7|2.69
i2c| 504 2966 1735.0|1454.5 16.17 5.00 742.7|1409.3 18.77 499 214.1|3.47|1418.7 18.23 10.00 694.5|1351.0 22.13 9.96 248.4|2.80
frg2 | 509 3069 1789.0| 952.4 46.76 4.97 1075.6| 9462 47.11 4.89 4358(2.47| 908.1 49.24 9.89 1005.9| 911.1 49.07 9.93 419.6|2.40
pei. | 566 2795 1680.5| 580.2 65.48 4.99 1007.2| 580.8 6544 498 613.8]1.64| 531.0 6840 995 9594 | 5219 6895 9.92 633.6|1.51
simple. | 570 2411 1490.5|1296.4 13.03 4.99 798.8|1187.8 20.31 4.93 238.7|3.35|1295.0 13.12 9.99 750.5|1163.9 21.92 991 2524297
pair | 712 3394 2053.0| 1836.6 10.54 5.00 1743.8|1820.8 11.31 495 397.0[4.39|18255 11.08 10.00 1562.7|1784.7 13.07 9.92 450.1|3.47
dalu| 782 3201 1991.5|1283.6 35.55 5.00 2462.0|1477.0 25.83 4.99 619.5|3.97(1049.3 47.31 9.99 2348.9 | 1386.7 30.37 9.98 746.5|3.15
C5315 | 1076 3959 2517.5]2278.1 9.51 4.96 2008.5|2270.8 9.80 4.93 519.0|3.87|2254.1 10.46 9.96 2207.3|2240.5 11.00 9.90 612.3|3.60
$9234 [1080 5976 3528.0|2167.3 38.57 5.00 3600.0|1928.2 45.35 4.99 1806.6|1.99|2117.7 39.97 10.00 3600.0| 1817.8 48.48 9.98 1981.0|1.82
C7552 | 1520 5479 3499.5|3141.2 10.24 4.99 3602.0|3121.5 10.80 4.87 1006.9 |3.58|3072.1 12.21 9.98 3600.0|3096.6 11.51 9.90 11054 |3.26
s13207 | 1943 8397 5170.0 | 3447.6 33.32 498 3600.0 |3122.4 39.61 4.99 3597.9(1.00|3412.2 34.00 9.96 3600.0 |3110.3 39.84 9.99 3600.0 | 1.00
system. | 2070 9206 5638.0 | 5475.2 2.89 4.98 3600.0 | 5054.0 10.36 4.96 3600.0 | 1.00 | 5455.7 3.23 9.98 3600.0|5036.3 10.67 9.98 3600.0| 1.00
ave. - - - - 21.06 - - - 228 - -12.42 - 22.69 - - - 2526 - -12.14
V. CONCLUSION [16] G. B. Huang et al., “Can threshold networks be trained directly?,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, 53(3), 2006, pp. 187-191.
) This is t.he first Work. that integrates threshold netvyorks [17] M. Imani et al., “Resistive configurable associative memory for approx-
with approximate computing. We propose three approximate imate computing,” Proc. DATE, 2016, pp. 1327-1332.
operations for threshold networks. Furthermore, the proposed [18] Y. Jin er al, “Pareto-Based Multiobjective Machine Learning: An
estimating method tradeoffs accuracy and computing effort, Overview and Case Studies,” IEEE Trans. on Systems, 2008, pp. 397-
which provides an efficient way to eliminate inappropriate 415.
candidate during approximation. According to the experi- [19] P-Y. Kuo et al,, “On Rewiring and Simplification for Canonicity in
. Threshold Logic Circuits,” Proc. ICCAD, 2011, pp. 396-403.
mental results, our approach efficiently reduces the cost of 20 Nz L | Amalvi N e coll) q
: ~Z. Lee et al., “Analytic approaches to the collapse operation an
approximate threshold networks. equivalence verification of threshold logic circuits,” Proc. ICCAD, 2016,
pp. 1-8.
REFERENCES [21] C.-C. Lin et al., “In&Out: Restructuring for Threshold Logic Network
[1] L. Amaru’ et al, “Majority-based synthesis for nanotechnologies,” Optimization”, Proc. ISQED, 2017, pp. 413-418.
Proc. ASP-DAC, 2016, pp. 499-502. [22] C.-C. Lin et al., “Rewiring for Threshold Logic Circuit Minimization,”
[2] C. Augustine et al., Low-power functionality enhanced computation Proc. DATE, 2014, pp. 1_6‘_) o
architecture using spin-based devices, Proc. Int. Symp. on Nanoscale [23] S. Muroga, “Threshold Logic and its Applications,” 1971, New York,
Architecture, 2011, pp. 129-136. NY: John Wiley.
[3] M. J. Avedillo et al., “Multi-Threshold Threshold Logic Circuit Design [24] ~ A. Neutzling et al., “Threshold Logic Synthesis Based on Cut Pruning,”
using Resonant Tunnelling Devices,” Electron. Lett., 2003, pp. 1502- Proc. ICCAD, 2015, pp. 494-499.
1504, vol. 39. [25] M. Perkowski et al., “Logic Synthesis for Regular Fabric Realized in
[4] V. Beiu ef al., “VLSI Implementations of Threshold Logic-A Compre- Quantum dot Cellular Automata,” Journal of Multiple-Valued Logic and
hensive Survey,” IEEE Trans. on Neural Networks, 2003, pp. 1217- Soft Comput., 2004, pp. 768-773.
1243, vol. 14. [26] V. Saripalli et al., “Energy-delay Performance of Nanoscale Transistors
[5] V. Beiu, “On Existential and Constructive Neural Complexity Results,” Exhibiting Single Electron Behav1or and Associated Logic Circuits,”
Neural Networks and Computational Intelligence, 2003, pp. 63-72. Journal of Low Power Electronics, 2010, pp. 415-428,vol. 6.
[6] A. Bernasconi et al., “2-SPP Approximate Synthesis for Error Tolerant [27] D. Shin er al., “Approximate logic synthesis for error tolerant applica-
Applications,” Proc. 17th Euromi. Dig. Syst. Design, 2014, pp. 411-418. tions,” Proc. DATE, 2010, pp. 957-960.
[71 Y.-C. Chen et al., “Fast Synthesis of Threshold Logic Networks with [28] C.-K. Tsai et al., “Sensitization Criterion for Threshold Logic Circuits
Optimization,” Proc. ASP-DAC, 2016, pp. 486-491. and its Application,” Proc. ICCAD, 2013, pp. 226-233.
[8] V. Chippa et al., “Analysis and characterization of inherent application (291 S. ankata.ramam et al, “Subsntutg-andmmphfy: A 1'1n1ﬁ.ed”de51gn
resilience for approximate computing,” Proc. DAC, 2013, pp. 1-9. paradigm for approximate and quality configurable circuits,” Proc.
o1 V. Chi L D ic off i M . b it DATE, 2013, pp. 796-801.
. et al., * t : t - . . . o R
1 efﬁcie;ggatr;degf e 2011 S;; oacog e T AHIRT 30 R, 0. Winder, “Single Stage Threshold Logic,” Switching Circuit Theory
0l L o.ch) ;‘C i 1' ’ | ' k i - IEEET and Logical Design, 1961, pp. 321-332.
[10] P o A L 1S [31] R. O. Winder, “Threshold Logic,” 1962, Ph.D. dissertation, Princeton
v 7 Pp- T University, Princeton, NJ.
[E/Ib::(rlir?h’}nll’%oit Z{S‘P ll;iaéor;tgl 7L 0g1c 7?;?7“ 11t95 Optimisation by Node [32] R. O. Winder, “Enumeration of Seven-Argument Threshold Functions,”
gme, : ’ ’ pp..))) IEEE Trans. on Electronic Computers, 1965, pp. 315-325.
[12] 1]3 F}(}lggaErbiggordonsgtl zi‘b Overview of Nanoelectronic Devices, [33] Y. Wu et al., “An efficient method for multi-level approximate logic
roc. ’ » PP) B) o synthesis under error rate constraint,” Proc. DAC, 2016. pp. 1-6.
(13] P'ldGEpté.l e;]alt., Ak”‘,‘? I?EECEF;C“ Gegilgtl(;(l)ofgr Conf(b);rlsatllgzgl Th]r eilg [34] R.Zhang et al., “Threshold Network Synthesis and Optimization and its
old Logic Networks, rans. i - PP- B » VOL 20. Application to Nanotechnologies,” IEEE Trans. Comput-Aided Design
[14] V. Gupt.a et al., “IMPACT: imprecise adders for low-power approximate Integrated Circuits and Systems, 2005, 24(1):107-18.
computing” Proc. ISLPED, 2011. pp. 409-414. [35] http://iwls.org/iwls2005/benchmarks.html

[15] J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” Proc. ETS, 2013, pp. 1-6.

778 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

